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A B S T R A C T

Herbicide resistant (HR) weeds are of major concern in modern agriculture. This situation is exacerbated by the
massive adoption of herbicide-based technologies along with the overuse of a few active ingredients to control
weeds over vast areas year after year. Also, many other anthropological, biological, and environmental factors
have defined a higher rate of herbicide resistance evolution in numerous weed species around the world. This
review focuses on two central points: 1) how these factors have affected the resistance evolution process; and 2)
which cultural practices and new approaches would help to achieve an effective integrated weed management.
We claim that global climate change is an unnoticed factor that may be acting on the selection of HR weeds,
especially those evolving into non-target-site resistance mechanisms. And we present several new tools –such as
Gene Drive and RNAi technologies- that may be adopted to cope with herbicide resistance spread, as well as
discuss their potential application at field level. This is the first review that integrates agronomic and molecular
knowledge of herbicide resistance. It covers not only the genetic basis of the most relevant resistance me-
chanisms but also the strengths and weaknesses of traditional and forthcoming agricultural practices.

1. Introduction

One of the main issues in modern agriculture is the ever-increasing
occurrence of herbicide resistance in weeds. From an agronomic view,
herbicide resistance can be defined as the inherited ability of a plant to
survive and reproduce after the exposure to a dose of herbicide that is
normally lethal to a wild-type plant of the same species [1]. This dy-
namic process impacts on both crop production and the environment,
and it represents a major challenge to farmers, scientists and the agri-
business sector.

The use of herbicides has been the main –almost exclusive– tool
used for weed control worldwide since the late 1960s. However, the
continuous use of the same herbicide or of herbicides with the same
mode of action (MOA) has inevitably led to the selection of resistant
weed populations [2]. Furthermore, during the last two decades, the
extensive adoption of transgenic crops tolerant to herbicides such as
glyphosate has led the agrochemical industry to slow down the devel-
opment of new herbicidal molecules, particularly those with new MOAs

[3]. Rapid efficacy combined with operative simplicity has resulted in
the overuse of a small number of herbicides, favoring the selection of
resistant weeds, mainly in the United States, Australia and South
America. The situation is also a concern in the European Union, where
the adoption of conventionally bred herbicide-tolerant crops has led to
wide spread instances of herbicide resistance [4].

There are many factors influencing the resistance evolution process,
and they can be broadly classified into two groups: anthropological and
biological. The anthropological factors are those related to human in-
terventions and weed management agronomic practices. These include
the use of different herbicides, the number of applications over time
along with their in-field application doses, as well as the selection of
crops and pastures for rotation, and the use of grazing animals and
tillage practices [5,6]. The biological factors include ecology, genetics,
the life history of every weed species, and the resistance mechanisms
involved.

There are two broad types of resistance mechanisms: target-site and
non-target-site. Target-site resistance (TSR) occurs when herbicides
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reach the target site at a normally lethal dose, but their impact is lim-
ited by the site’s changes; while non-target-site resistance (NTSR) in-
volves mechanisms that either minimize the amount of active herbicide
reaching the target site or protect the plant against oxidative damages
from herbicide action [7–9]. Both resistance mechanisms can be caused
by structural or regulatory mutations [8]. In the first type, changes in a
protein-coding DNA sequence modify the 3-dimensional structure of the
herbicide-targeted protein, which lowers herbicide efficiency. The
second type of mutation results in the differential expression of one or
several genes in resistant plants compared to sensitive plants, and it
includes whole-gene amplification, changes in the promoter sequence
and epigenetic processes (e.g., DNA methylation).

During the last decade, omics has begun to contribute significantly
to decoding the molecular mechanisms of herbicide resistance. In par-
ticular, comparative genomics is helping to identify the genetic basis of
weedy traits [10]. Likewise, RNA-seq studies provide a deeper under-
standing of the molecular basis of non-target-site resistance, especially
in those species with little or no previous sequence information [11].
The integration of different omics is crucial to achieve a broader
comprehension of the biological systems that may impact the devel-
opment of future weed management strategies.

Overall, this work aims to discuss the current global status of HR
weeds, by focusing on three central points: i) the molecular basis of
herbicide resistance known until now; ii) the factors that have affected
the resistance evolution process; and iii) the control strategies that
would help to achieve an effective integrated weed management, con-
sidering both traditional agronomic practices and newly emerged
technologies. This review integrates the main agronomic components
with the molecular biology knowledge of herbicide resistance, eviden-
cing a huge demand for new research in this still underexplored in-
teraction.

2. Herbicide resistance mechanisms

2.1. Target-site resistance evolution: a bit of history

Target-site resistance (TSR) mechanisms were the first to be eluci-
dated. The first serious case of TSR was documented in 1968 in a
common groundsel (Senecio vulgaris L.) population that was no longer
controlled by simazine or atrazine [12]. Specifically, the triazine re-
sistance mechanism was due to a mutation in the chloroplast PSBA
gene, changing serine 264 to glycine, which reduced the affinity of D1
protein in photosystem II for triazine herbicides [13].

However, it was not until the 1980s that cases of herbicide re-
sistance became widespread. These involved inhibitors of acetyl coen-
zyme-A carboxylase (ACCase) and acetolactate synthase (ALS) [14].
Resistance to either was caused by target site mutations, in both cases
acting as a functionally dominant traits. Several cases evolved quickly
in multiple species [15,16] as a consequence of the limited fitness costs
associated with these resistance traits [9]. Additionally, in contrast to
the first detected TSR to triazine that was only maternally inherited
[17], ALS and ACCase inhibitor mutations are also paternally inherited,
allowing for spread of resistance mutations via pollen.

In 1996, glyphosate resistant (GR) crops were introduced to North
and South America, and later, to Australia. Some cases of GR weeds
started to be reported soon afterwards [18,19]. The point mutation in a
key residue (proline 106) of the 5-enolpyruvylshikimate-3-phosphate
synthase (EPSPS; glyphosate’s target protein) confers weak resistance to
glyphosate [20]. Another TSR mechanism, which involves the over-
expression of EPSPS by gene amplification, was reported in several GR
weeds [21–24]. The genomic mechanisms causing this gene amplifi-
cation include both tandem gene duplication [25,26] as well as the
proliferation of an extrachromosomal element [27]. These mechanisms
are associated with transposable elements, which are hypothesized to
play a role in the formation of duplicated gene copies. Additionally, the
double amino acid substitution in the EPSPS -called TIPS- has been

reported in Eleusine indica [28,29] and Bidens pilosa [30]; while a new
double mutation -called TIPT- [31] and a novel triple amino acid sub-
stitution -called TAP-IVS- [32,33] have been recently characterized in
Bidens subalternans and Amaranthus hybridus, respectively.

For some herbicides, TSR mechanisms have evolved in relatively
few species, especially for to those herbicides that are not widely used
[34]. This makes sense if we consider that a high selection pressure is
the main force that drives resistance spread, although this explanation
would also be valid for NTSR. However, in some cases, there are other
reasons for this phenomenon to occur. For example, in the case of
synthetic auxin herbicides, the low incidence of TSR can be attributed
to the multiple sites of action they have (auxin receptors and auxin-
specific transporters) and the functional redundancy in the receptor
family [35]. As a consequence, only stacked mutations would sig-
nificantly alter the response to these herbicides, but not without a
concomitant fitness cost. There is only one case that confirms the
evolution of TSR to synthetic auxins in Kochia scoparia, which involves
the AUX/IAA co-receptor [36]. However, there are also other possible
TSR cases (coexisting with NTSR mechanisms) in Raphanus raphanis-
trum [37] and grasses [38,39]. Specifically, the accumulation of cyanide
that results from quinclorac-induced ethylene production has been
proposed as the main mechanism of action of this herbicide in sus-
ceptible grasses [40]. An alteration in the induction of the ethylene
biosynthesis pathway (more precisely, in the two key enzymes ACC
synthase and ACC oxidase) seems to be involved in this resistance
[38,39]. Nonetheless, the genetic basis of this apparent TSR remains
unclear.

A singular TSR evolution is represented by the protoporphyrinogen
oxidase (PPO) inhibitors. In this case, glycine 210 located near the
active site of PPO is missing [41]. This deletion reduces herbicide
binding efficiency while retaining enzyme activity. Computational
models suggest that such deletion eliminates an important interchain
hydrogen bond between glycine 210 and serine 424, resulting in a
conformational change of the binding pocket and, thus, resistance [42].
This unusual TSR was confirmed in only two species: Amaranthus tu-
berculatus and Amaranthus palmeri [41,43] but recently, some other PPO
point mutations have been found in the latter species [44,45].

Table 1 summarizes the types of TSR (and NTSR) mechanisms found
in weeds thus far, which have evolved against the six most problematic
herbicide groups.

2.2. Non-target-site resistance: a slower but persistent walk

Although the first case of NTSR was reported in 1957 in a 2,4-D
resistant wild carrot (Daucus carota L.) population [46,47], only a few
non-target-site mechanisms have been elucidated at the molecular level
up to now [48]. This is because biochemical processes are inherently
complicated and have a quantitative nature, and available genomic
information for weedy species is limited. This polygenic nature of the
NTSR mechanisms has a direct incidence on their evolution, as every
gene provides some level of resistance. Thus, when a herbicide does not
achieve full weed control in successive generations (usually because of
a reduced application rate), then different NTSR genes might contribute
to increase herbicide tolerance [49]. In outcrossing species, where in-
dividuals exchange and recombine alleles, NTSR development should
be faster than in self-pollinated species. Additionally, how fast NTSR
alleles accumulate in a population depends on their initial allelic fre-
quency, the genetic diversity and population size, the selection pres-
sure, and the resistance fitness costs [50].

Metabolic resistance is one of the best elucidated NTSR mechan-
isms, and can be described as a plant detoxification process that com-
monly consists of four phases [51–53]. We have summarized this pro-
cess in detail in Fig. 1. Délye et al. [7] proposed that part of the NTSR
may be constitutive and part could be induced because the plant de-
toxification process was under polyallelic genetic control. Recently, a
comparative transcriptomic analysis has allowed the identification of
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Table 1
Summary of the resistance mechanisms reported in weeds for the most used herbicide groups.

Herbicide GroupD Herbicide Resistance B,C Ref.A

Mechanistic and genetic basis Molecular players Physiological/biochemical effect

TSR, ACCase amino acid substitutions:
I1781L/V/A/T; W1999C/L/S; W2027C; I2041N/V/T; D2078G;
C2088 R; G2096A/S

ACCase Reduced herbicide sensitivity of
ACCase

[15,85]

TSR, ACCase gene overexpression? ACCase Higher ACCase activity [86–88]
TSR, ACCase gene overexpression ACCase Higher ACCase activity? [88]
NTSR, unknown basis Greater epicuticular wax density

in
the leaf cuticles

Reduced foliar absorption [89]

NTSR, unknown basis Cyt P450 Enhanced metabolism [90–92]
NTSR, unknown basis Cyt P450; GST Enhanced metabolism [71,93]
NTSR, gene overexpression: CYP72A; NMO; GT; GST Cyt P450; NMO; GT; GST Enhanced metabolism [57]
NTSR, gene overexpression: CYP87A3; CYP71D7; PIR7B; GDSL
esterase/lipase 4g01130; Peroxidase (1, 66); GST (U1, U6, T3);
UDP-GT (73C1,85A2); ABC transporter B family member 10

Cyt P450; esterase; POD;
GST;GT; ABC transporter

Enhanced metabolism [60]

NTSR, gene overexpression: CYP71A4 Cyt P450 Enhanced metabolism [61]
NTSR, gene overexpression: AmGSTU1; AmGSTF1; AmGSTL1 GST Enhanced metabolism and

protection against collateral damage
[69,81]

B (ALS inhibitors) TSR, ALS amino acid substitutions:
A122T/V/Y/S/N; P197T/H/R/L/Q/S/A/I/N/E/Y/M/K/W;
A205V/F; D376E; R377H; W574L/G/M/R; S653T/N/I; G654
E/D

ALS Reduced herbicide sensitivity of ALS [9,16,94–96]

TSR, ALS gene overexpression ALS Higher ALS activity? [97]
NTSR, unknown basis Greater epicuticular wax density

in
the leaf cuticles?

Reduced foliar absorption [98]

NTSR, unknown basis Cyt P450 Enhanced metabolism [91,99]
NTSR, gene overexpression: CYP71AK2; CYP72A254 Cyt P450 Enhanced metabolism [59]
NTSR, gene overexpression: CYP81A12; CYP81A21 Cyt P450 Enhanced metabolism [100]
NTSR, gene overexpression: CYP71A; CYP71B; CYP81D Cyt P450 Enhanced metabolism [58]
NTSR, gene overexpression: CYP94A1; CYP71A4 Cyt P450 Enhanced metabolism [61]
NTSR, gene overexpression: CYP72A; CYP81B1;GST; GT Cyt P450; GST; GT Enhanced metabolism [56]
NTSR, gene overexpression: CYP96A13; ABCC1 Cyt P450; ABC transporter Enhanced metabolism [68]
NTSR, gene overexpression: Esterase; GST (U1, U6); GT; POD (5,
65); CAT (1, 2)

Esterase; GST; GT; POD; CAT Enhanced metabolism and
protection against collateral damage

[72]

C (PSII inhibitors) TSR, D1 protein amino acid substitutions:
L218V; V219I; A251V;
F255 I/V; S264G/T; N266T

D1 protein Reduced herbicide sensitivity of
D1protein

[101–107]

NTSR, gene overexpression: CYP? Cyt P450 Enhanced metabolism [108]
NTSR, gene overexpression: AtuGSTF2? GST Enhanced metabolism [70]
NTSR, unknown basis GST Enhanced metabolism [109]
NTSR, unknown basis Unknown Reduced absorption and

translocation
[110]

E (PPO inhibitors) TSR, PPO G210 codon deletion PPO Reduced herbicide sensitivity of PPO [41,43]
TSR, PPO amino acid substitutions
R128G/M; G114E; S149I; G399A

PPO Reduced herbicide sensitivity of PPO [111,44,45]

NTSR, unknown basis Cyt P450 Enhanced metabolism [67]
NTSR, unknown basis Cyt P450; GST Enhanced metabolism [66]

F (synthetic auxins) TSR, IAA16 amino acid substitution: G127N AUX/IAA co-receptor Altered auxin signaling [36]
TSR+NTSR?, gene overexpression:
IAA29; IAA30; MEKK1; ABCB11

AUX/IAA co-receptor
phosphorylated MAPK
ABCB-type auxin efflux
transporter

Altered auxin signaling, enhanced
defense response and reduced
translocation

[37,80]

TSR+NTSR?, unknown basis ACC synthase; ACC oxidase; β-
cyanoalanine synthase

Alteration in the ethylene response
pathway and protection against
collateral damage

[38,39]

NTSR, unknown basis unknown Reduced foliar absorption [112]
NTSR, unknown basis unknown Reduced translocation [113,114]
NTSR, gene overexpression: CHS quercetin and kaempferol

overproduced by chalcone
synthase
ABCB-type auxin efflux
transporter?

Reduced translocation [115]

NTSR, unknown basis unknown Enhanced metabolism [116]
NTSR, unknown basis Cyt P450 Enhanced metabolism [62,65,117]

(continued on next page)
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several up-regulated transcription factors involved in stress response
signaling and regulation in glufosinate-tolerant A. palmeri biotypes
[54]. Although it can be expected that a coordinated regulation of

detoxifying genes should confer herbicide resistance, there is a limited
description of transcription factors involved in NTSR so far.

Since the activation of toxic molecules in phase I plays a crucial role

Table 1 (continued)

Herbicide GroupD Herbicide Resistance B,C Ref.A

Mechanistic and genetic basis Molecular players Physiological/biochemical effect

G (EPSPS inhibitors) TSR, EPSPS amino acid substitutions
P106S/A/T/L; T102S

EPSPS Reduced herbicide sensitivity of
EPSPS

[20,118]

TSR, EPSPS amino acid double substitution:
T102I + P106S
T102I + P106T

EPSPS Reduced herbicide sensitivity of
EPSPS

[28–31]

TSR, EPSPS amino acid triple substitution:
T102S +A103V +P106S

EPSPS Reduced herbicide sensitivity of
EPSPS

[32,33]

TSR, EPSPS gene amplification (eccDNA) EPSPS Higher EPSPS activity [27]
TSR, EPSPS gene amplification (transposon-mediated tandem
duplication)

EPSPS Higher EPSPS activity [26]

TSR, EPSPS gene amplification
(unknown genomic mechanism)

EPSPS Higher EPSPS activity [119,120]

NTSR, unknown basis Unknown Reduced foliar absorption and
translocation

[121]

NTSR, unknown basis Unknown Reduced translocation [48,73–76]
NTSR, unknown basis ABC transporter? Reduced translocation [122,123]
NTSR, gene overexpression: M10; M11; M7; P3; ABCG29;
ABCC3; ABCG42

ABC transporter Reduced translocation [78,79]

NTSR, unknown basis Unknown Rapid cell death (‘phoenix’
mechanism)

[124]

NTSR, unknown basis Unknown Enhanced metabolism [125]
NTSR, gene overexpression: CYP82D47 Cyt P450 Enhanced metabolism? [126]

Abbreviations: ACCase: acetyl-CoA carboxylase; Cyt P450: cytochrome P-450; GST: glutathione-S-transferase; NMO: nitronate monooxygenase; GT: glycosyl-
transferase; ALS: acetohydroxyacid synthase; POD: peroxidase; CAT: catalase; PSII: photosystem II; PPO: protoporphyrinogen oxidase; EPSPS: 5-en-
olpyruvylshikimate 3′-phosphate synthase; eccDNA: extra-chromosomal circular DNA.

A Representative review articles and some of the most methodologically complete research articles were selected for each mechanism.
B Combinations of two or more mechanisms within each herbicide group have often been reported in a single population. However, multiple mechanisms were

explicit only in cases where there are no reports of individual contributions to resistance.
C A question mark was added when a hypothesis without substantial empirical validation was proposed in the cited articles.
D Each mechanism is associated to resistance to either a single active ingredient, a complete chemical family, several chemical families or the whole herbicide

group. For more detail, please refer to the cited articles.

Fig. 1. Non-target-site herbicide resistance as a detoxification process that follows a four-phase schema.
Phase I comprises the activation step, where herbicide molecules are modified so that certain functional groups are exposed to the next step’s enzymes. Usually, this
modification is carried out by P450 monooxygenases or mixed-function oxidases. Phase II generally involves conjugation, which implies the binding of a bulky
hydrophilic molecule to the activated herbicide through sugars or thiol groups. This process is mainly done by Glutathione-S-Transferases (GSTs), and it enables the
recognition of the modified herbicide by the proteins of phase III. Phase III entails the active transport of the conjugated herbicide molecule into the vacuole or the
extracellular space, commonly carried out by ABC transporters. Finally, in phase IV, the conjugated molecule is further degraded within the vacuole or in the
extracellular space.
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in further detoxification by enzymes in phase II (see Fig. 1), the initial
characterization of metabolic resistance in any HR weed usually focuses
on the identification of the cytochrome P-450 (cyt P450) involved in
each NTSR case. Enhanced herbicide metabolism due to the altered
expression of cyt P450 and other metabolism-specific genes have been
mainly characterized in grass species, explaining how these species
survive a wide range of herbicides [55–61]. However, many reports
have confirmed that metabolic resistance can also be present within
broadleaf weeds [62–68], although its genetic basis is underexplored.
So far, glutathione-S-transferase (GST) and/or glycosyl-transferase (GT)
induction has been confirmed to cause enhanced herbicide metabolism
in both grasses and broadleaf weeds [56,57,60,66,69–72].

Another NTSR mechanism is the reduction in herbicide transloca-
tion, i.e. a restriction in herbicide mobility within the plant (via xylem
and/or phloem) and/or its compartmentalization (sequestration in the
cell wall or vacuole; active exclusion from the chloroplasts) [50]. Ob-
viously, these mechanisms are mainly for systemic herbicides. For ex-
ample, reduced glyphosate translocation has been documented in sev-
eral GR populations [53,73–77]. Curiously, two studies reported the
involvement of ABC transporters in vacuolar sequestration of glypho-
sate in Conyza canadiensis [78,79], but the candidate genes have not
been functionally validated yet. Similarly, an ABCB-type auxin efflux
transporter has recently been associated with 2,4-D resistance in Ra-
phanus raphanistrum [80], although a subsequent transcriptomics study
suggested that reduced translocation may not be as strong a resistance
mechanism as originally thought [37].

For NTSR mechanisms involving reduced foliar absorption or pro-
tection against oxidative damage stemming from herbicide action, there
are a few in-depth studies that point out the role of cuticular waxes and
several detoxifying enzymes, respectively. Enzymes such as GST (con-
sidering its glutathione-peroxidase activity), catalases (CATs) and per-
oxidases (PODs) are considered essential against the oxidative damage
induced by herbicides [69,72,81]. Moreover, elevated β-cyanoalanine
synthase activity has been suggested as a mechanism contributing to
quinclorac resistance in grasses by increasing the ability to detoxify
cyanide [38]. Protection against oxidative damages has never been
identified as an exclusive mechanism in a resistant population, prob-
ably because of its poor contribution to agronomic resistance.

Finally, an unusual NTSR case involving rapid cell death has been
observed in GR populations of Ambrosia trifida [82]. Surprisingly, just a
few hours after glyphosate spraying, the treated plant tissue withers
and dies. Thus, the herbicide cannot be translocated from the dead
zones, and plants can generate new organs through meristems. Al-
though the molecular basis of this mechanism is still unknown, it has
been found to trigger an increase in reactive oxygen species, to require
light or exogenous sucrose, and to be inhibited by the addition of
aromatic amino acids, suggesting that it might be associated with shi-
kimate pathway inhibition [83].

Thus, while target-site gene mutations were evolving and were
readily detected by weed scientists, the NTSR alleles were accumulating
less noticeably. So, ‘the rabbit and the turtle’s fable’ appears to have its
version in the herbicide resistance evolution. Nowadays, increasing
numbers of NTSR cases are being reported for the most important
herbicide groups worldwide [7,9,84]. So, the turtle (NTSR) seems to be
finally winning the race.

Table 1 summarizes all NTSR mechanisms detected up to now for
the most commonly applied herbicide groups, reflecting the deepest
knowledge achieved in each case.

3. How can the knowledge of population genetics contribute to
management decisions?

The development of effective weed control strategies requires an
extensive understanding of each weed population. This includes
knowledge of flower biology and reproductive systems, fecundity,
variations in seed dormancy, seeds and pollen migration distances, and

the benefit/cost balance for the maintenance of genetic polymorphism.
Furthermore, elucidating resistance mechanisms at the molecular level
(target and non-target) is crucial as well, especially now when weed
management is directed towards the integration of multiple ap-
proaches.

An important genetic factor to consider is the ploidy level of each
weed population. Briefly, many of the most problematic grasses are
polyploids, which are genetically more diverse [127]. Their gene re-
dundancy should enable more mutation diversity in HR genes, and it
may promote a faster evolution towards resistance. However, in these
species, the resistance magnitude conferred by a mutation in one gene
may be diluted by multiple sister alleles, resulting in a negative cor-
relation between the copy-number of the target gene and the resistance
level [128]. There are only few studies that have attempted to de-
termine the potential link between ploidy and evolution of HR plants.
For example, Yu et al. [129] reported that a hexaploid wild oat (Avena
fatua) was resistant to ACCase inhibitors, and they found a negative
association between ploidy and herbicide resistance evolution.

Understanding a weed’s resistance mechanisms to a herbicide is
important in several ways. For example, in the case of glyphosate, re-
vealing such mechanisms has allowed scientists to better comprehend
glyphosate’s mode of action and to develop methods to faithfully
measure the rapid spread of resistance among weeds [21,130]. In ad-
dition, it is crucial to know which TSR and/or NTSR mechanisms a
weed population contains so that the appropriate herbicide resistance
management strategies may be used. For example, control of a weedy
population containing the W574 substitution in ALS protein may re-
quire the rotation of herbicides with different MOA, because this mu-
tation confers resistance to a broad range of ALS-inhibiting herbicides.
Meanwhile, another TSR mechanism such as the A122 T substitution in
ALS protein may allow the use of different chemicals within ALS-in-
hibiting herbicides, given that this mutation only confers resistance to
the imidazolinone family [16]. On the contrary, the presence of NTSR
mechanisms is more complex to interpret in terms of management de-
cisions. This is mainly due to their high complexity, poor molecular
characterization, and slow detection.

Different NTSR mechanisms were reported to be responsible for
several cases of multiple resistance; interestingly, all of them were
specific for one herbicide [59,90,93]. However, the possibility of a
unique NTSR mechanism to cause cross-resistance cannot be ruled-out.
For example, the overexpression of an antioxidant enzyme could pre-
vent the lethal oxidative stress triggered by different herbicides [131].
Similarly, an alteration in certain transmembrane transporters could
simultaneously affect the translocation of several active ingredients; or
a change in a cyt P450 activity could trigger the metabolism of various
herbicides as recently proposed by Shergill et al. [132]. Thus, the
identification of a potentially unique NTSR mechanism in a weed po-
pulation could prevent the use of more than one herbicide. The de-
tection of NTSR systems could be of more practical use in weed man-
agement programs if a better understanding of the underlying
mechanisms is acquired.

4. Is global climate change an unnoticed factor in herbicide
resistance evolution?

As a result of climate change, weed flora of some arable ecosystems
has suffered considerable transformations during the last decades
[133]. For instance, a number of thermophile, late-emerging and op-
portunistic weeds have become more abundant in many cropping sys-
tems [134]. Therefore, weeds with high phenotypic plasticity regarding
extreme weather events may be more likely to survive.

Although herbicide resistance mechanisms can be associated to fit-
ness costs, fitness benefits endowing some adaptive advantages in the
absence of herbicide selection pressure are also possible. Particularly,
the presence of a considerable number of HR weed populations in areas
never treated with herbicides could be explained by the fitness benefits
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of mutations that confer such resistance. For instance, the I1781 L
mutation in ACCase gene not only confers TSR, but also it increases
biomass production of Setaria italica [135], and delays seed germination
in Alopecurus myosuroides [136]. This last effect potentially allows this
species to escape from early-season weed control measures [136]. Thus,
a HR biotype can present additional advantages under particular en-
vironmental conditions even in the absence of herbicides. Accordingly,
Délye et al. [137] have shown that the aforementioned mutation in
ACCase from A. myosuroides was present in weed populations prior to
herbicide selection in higher frequencies than those observed for de
novo mutation., The authors refer to it as an ‘efficient’ resistance gene,
i.e., a gene conferring resistance without significant deleterious pleio-
tropic effects.

Under global climate change, plant invasion rates have increased
[138] and geographical patterns of highly competitive weeds have
changed [139,140]. Therefore, gene-environment interactions should
be studied to assess the indirect contribution of climate change on the
evolution of herbicide resistance. Moreover, environmental conditions
can directly influence the expression of HR genes, as was demonstrated
by Vila-Aiub et al. [141]. In fact, Matzrafi et al. [142] have reported
that climate change reduces herbicide efficacy on weeds in a metabo-
lism-based manner and, consequently, increases risk of NTSR evolution.
In this context, Markus et al. [131] discusses the effect of epigenetic
changes on HR plants as a new perspective to understand how en-
vironmental stress can affect resistance evolution.

Since NTSR is part of the weed’s response to abiotic stresses [50], it
is valid to hypothesize that plants displaying it could be more likely to
survive under particular stress conditions, such as high temperatures or
altered precipitation patterns derived from climate change. If, indeed,
there is such unnoticed selection pressure, it seems to be even more
difficult to overcome than an irresponsible weed management.

5. Perspectives on weed resistance management

Weed management systems based solely on herbicides are not sus-
tainable in the long term. Instead, a weed management program that
combines multiple methods is highly recommended. Two fundamental
approaches could be used to mitigate (proactive strategies) or control
(reactive strategies) herbicide resistance. The former aims to reduce
herbicide selection pressure by diversifying controlling procedures for
weed management, which should minimize the survival and re-
production of resistant individuals; while the latter aims to diminish the
spread of resistance due to seed production, pollen dispersion, and
propagule dissemination [143].

Although the Integrative Weed Management (IWM) concept origi-
nated more than a half-century ago [144], its adoption has been quite
unsuccessful. Farmers have largely failed to implement more proactive
strategies, arguing greater costs and management complexity. Thus, the
current management response to herbicide resistance is usually re-
active, and multiple factors have been associated with this approach
[143,145]. The main reasons for growers’ lower adoption of proactive
strategies are many: the increase in weed-control costs, the perception
that the benefits of delaying resistance are uncertain, and the ex-
pectation that new herbicides will become available in the future
[146,147]. Therefore, an improved understanding of the human com-
ponent in weed management is required to approach this multi-
dimensional topic [4,148,149].

Next, we propose several different practices that could be in-
corporated into an IWM program (IWMP) to approach a ‘sustainable
intensification’ [150]. We discuss their potential use and the advantages
and disadvantages each may have. Some of these practices are novel
and have not been adopted yet. We have classified these strategies into
two groups: ‘proactive’ and ‘reactive’ (see Fig. 2). Although this cate-
gorization is not strict (no strategy belongs exclusively to a unique
group), it helps to highlight the predominant usefulness of each one.

5.1. Traditional agronomic practices and technologies

5.1.1. Crop rotation
One of the most promising strategies in weed management is the

design of a crop rotation system based on sound agronomic knowledge,
since weed population density and biomass production can be sig-
nificantly reduced using a temporal diversification scheme [151].
Moreover, a key benefit of rotational diversity is that it facilitates
herbicide diversity due to the different MOAs available for different
crops.

Crop rotation may create environments that limit the growth and
proliferation of particular weed species due to the greatest variability
regarding soil disruption, competition for resources, allelopathic ef-
fects, and mechanical damage [152]. Thus, this practice helps to di-
versify weed management programs, decreasing the selection pressure
that favours the dominance of a few weedy species in a given field
[153].

Green manures and cover crops (soil-improving or soil conservation
crops) may also become part of a rotation system, and they are planted
in seasons when main crops are not cultivated. However, these prac-
tices are mainly used in special situations, such as organic farming
[154]. Cover crops not only reduce weed proliferation during fallow but
also increase microbial activity in soil [155], which could favour her-
bicide degradation. Rye (Secale cereale), barley (Hordeum vulgare),
wheat (Triticum spp), and oat (Avena sativa) seem to be the most weed-
suppressive gramineous cover crops. Thus, for example, cereal rye
cover crops (Secale cereale L.) not only reduced Palmer amaranth bio-
mass in cotton fields but also retarded the critical period for weed
control [156]. On the other hand, legume cover crops offer another
alternative for weed management, with the supplementary advantage
of reducing the use of synthetic nitrogen fertilizer.

It is important to point out that herbicides are typically used for
cover crop termination before main crop planting [157]. Although
these herbicides are usually non-selective and with low carryover, re-
cent research has focused on improving mechanical termination with
rollers or crimpers, which may contribute to diversifying practices and
to avoiding vicious application cycles [158].

Even though many aspects of crop rotations are compatible with
current farming practices, they have not been widely adopted by
farmers compared to other recommended management strategies. The
reasons are multifaceted, and they include socioeconomic as well as
biological factors, which have been discussed in detail by Hurley and
Frisvold [145]. Herein we would like to highlight that, in the short run,
crop rotation systems may cause lower economic returns than mono-
culture systems. This economic factor, together with simpler equip-
ment, knowledge and practical experience required by monoculture
systems, explains why crop rotations have been dramatically simplified
in the last decades [154].

5.1.2. Herbicide rotation and mixtures
The undesirable ecological shift in weed flora due to the use of a

single herbicide, along with the fact that weeds can become resistant to
any herbicide that is not properly used, are two lessons learned from
glyphosate overuse. Nowadays, herbicide rotations, herbicide combi-
nations and, even more, rotation of herbicide mixtures are the most
recommended chemical practices. All these strategies rely on the as-
sumption that newly emerged HR alleles will decrease in frequency
upon the removal of the selection pressure favouring such alleles [159].

In herbicide rotation, two or more herbicides are selected for weed
control, and then the practice is to rotate between the different herbi-
cides every season. In this way, the selection pressure carried out by
each herbicide is minimized. In the absence of each herbicide, a lower
resistance evolution rate could derive from a significant fitness cost
associated to a particular mechanism causing resistance to that herbi-
cide. However, this strategy could not be effective if the fitness cost is
limited, as it was demonstrated by Wu et al. [160].
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Interestingly, when herbicide mixtures were used a delayed selec-
tion of HR weeds was observed in comparison to the sequential appli-
cation of herbicides with different MOAs [161,162]. However, in an
attempt to reduce costs, herbicide mixtures are often applied at doses
below the recommended rates [151]. The use of sublethal doses should
be avoided because it increases the risk of selecting NTSR mechanisms
or cross-resistance [163–165]. Moreover, herbicide selection for mixing
requires special care, since some herbicides have shown antagonistic
effects when combined [166,167].

5.1.3. Tillage system
Tillage systems have a notorious impact on weed species seedbank

composition, seed abundance and seed depth-distribution in the soil
[168]. In no-tillage (NT) systems, seeds tend to accumulate near the soil
surface, while moldboard plowing followed by disking buries them.
Consequently, in NT systems the dominant weed species should be
those whose seeds are adapted to survive, germinate and grow near the
soil surface. In contrast, species whose germination requires burial-in-
duced dormancy break or predator protection will be dominant in til-
lage systems. Thus, perennial weed abundance increases after several
years of reduced tillage, given that the disturbance of vegetative pro-
pagules is lower and seeds remain near the surface [5]. Purple and
yellow nutsedge (Cyperus sp. L) and johnsongrass (Shorghum halepense
L.) expansion is a clear consequence of this phenomenon, which con-
tributes to the ability of these species to develop herbicide resistance
[169,170]. Therefore, one way to control these problematic weeds
could be the occasional use of tillage practices in a NT system, since
they are the best means to disturb vegetative propagules and restore the
balance in soil seedbanks [151]. Thus, this mechanical weed control has
been re-adopted by growers in the last few years, but it still represents
an agronomic setback compared to the advantages of NT systems (e.g.
reduced erosion, improved soil structure, and increased soil water
holding capacity, soil organic matter, carbon sequestration in soil, and
soil biodiversity).

5.1.4. Crop competition
This tactic aims to maximize the ability of the crop to compete for

water, light, space, and nutrients, and to avoid problems related with

the intensive use of herbicides.
Selecting appropriate cultivars and planting patterns may reduce

weed-induced yield loss by increasing the crops’ ability to outcompete
weeds for resources. One of the first studies demonstrating the effec-
tiveness of this weed management strategy was carried out using three
weed-suppressive Asian rice cultivars, in comparison to four US culti-
vars [171]. Later, effective weed control was achieved in wheat, sor-
ghum, canola, maize and soybean by selecting appropriate row spacing,
row orientation, planting frequency, plant density and cultivars with
high competitive aptitudes (e.g. high biomass, quick growth, rapid
germination, large leaf area, and production of allelochemicals)
[172–177].

Crop competition strategies not only reduce yield loss, but they may
also decrease selection pressure and herbicide dependence for weed
control. Thus, they could diminish the negative impact that herbicide
overuse has on the environment.

Despite the potential that crop competition strategies have as en-
vironment-friendly weed management tools, they are underexploited
[178]. Poor understanding of weed-crop interactions hinders the de-
velopment of sustainable and cost-effective crop competition tactics
[179,180]. Nevertheless, they should become an essential component of
IWMP as both proactive and reactive responses against herbicide re-
sistance selection.

5.1.5. Genetically engineered crops
Maintaining or increasing herbicide diversity certainly plays an

important role in the management of HR weeds. Genetically engineered
(GE) crops have been blamed for increased problems with HR weeds
since they may cause significant changes in herbicide use patterns. A
recent analysis to quantify the impact of GE crops on the herbicide
resistance evolution rate in the US demonstrated that the adoption of
HR varieties substantially reduced herbicide diversity in cotton and
soybean, increasing selection pressure for HR weeds in both crops,
while adopting GE corn varieties did not reduce herbicide diversity
[181].

Stacking HR genes into a single crop offers the possibility to rotate
and/or combine different herbicides to delay herbicide resistance evo-
lution in weeds. New engineered major crops with resistance to 2,4-D,

Fig. 2. Classification of strategies for an effective handling of
herbicide resistance.
Strategies for an effective handling of herbicide resistance can
be classified into proactive (to mitigate resistance evolution)
and reactive (to reestablish control after resistance emerged).
See sections 5.1 and 5.2 for a complete description of each
strategy.
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dicamba and inhibitors of HPPD, ACCase or ALS, either alone or com-
bined with glyphosate and/or glufosinate resistance, are on the way
[182]. However, strategies exclusively based on chemical control will
not be reliable in the long term because evolution will override herbi-
cide efficacy, as it has been demonstrated by the increasing number of
multiple resistance cases [34]. Therefore, these new tools should be
used more responsibly than in the past to extend their benefits and to
minimize undesired effects.

On the other hand, a rational design of new HR alleles by directed
evolution studies, associated with new breeding techniques, such as
directed mutagenesis by oligonucleotide –ODMs– or genetically en-
gineered –ZF, TALE or CRISPR– nucleases, are in the pipeline as novel
contributions to the HR weed problem. These novel technologies were
already applied to herbicide resistance in crops: a canola resistant to
ALS inhibitors (SU Canola™) was obtained by precision gene editing,
mediated by ODMs. This innovative development was carried out by
Cybus, the Rapid Trait Development System (RTDS) [183], which is now
available in the United States. Although these technologies would allow
for the development of products with similar resistances to those al-
ready available, in many countries the legal regulation processes for
these GMOs are generally faster than those for transgenic crops [184].

Thus, the release of edited resistant crops would be easier and would
increase the variety of tools available for rotation.

5.2. Modern and promising technologies

5.2.1. Bioherbicides
The development of new herbicides is of great importance because

the effectiveness of commercially available ones is decreasing drama-
tically, and chemical weed control still remains the most widespread
agronomic practice. ‘Allelochemicals’ are natural substances that could
be used as bioherbicides. These compounds participate in allelopathy, a
natural phenomenon that involves the interactions among plant species
and microorganisms through the synthesis of a wide variety of bio-
communicators. Allelochemicals are secondary metabolites exuded by
plants, and they can affect the germination and growth of neighboring
plants by interfering with different physiological processes such as
photosynthesis, respiration, and water or hormonal balance [180].
These natural products provide an attractive alternative to find com-
petent and environment-friendly herbicidal compounds with high
structural diversity and novel MOAs.

Several allelochemicals have been described in various plants

Fig. 3. Reversion of resistant trait through gene drive technology.
A. A drive gene carrying a susceptible allele of a HR-target gene within a Cas9-sgRNA construct is used to replace the sister resistant allele present in the homologous
chromosome. Directed by a few sgRNA, Cas9 endonuclease reliably cuts target sequences and makes a break that allow the cell repairing systems to work through
homologous recombination or non-homologous end-joining repair. B. When a susceptible plant carrying an endonuclease gene drive (green) mates with a HR plant
(red), the gene drive is preferentially inherited by all offspring. This can enable the drive to spread until it is present in all members of the population. Adapted from
Esvelt et al. [210].
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[185–188]. Sorgoleone is one of the most characterized allelopathic
chemicals. It is released from the root exudates of Sorghum bicolor and is
predominantly concentrated in the living root hairs. This molecule in-
hibits weed growth without affecting the cultivated crop species,
making sorghum a good option for crop rotation [189].

Although some plant extracts can be successfully used for weed
control, and thus be incorporated in IWMP, reduced profitability hin-
ders their in-field application. Hence, research has focused on the iso-
lation of single compounds which may be formulated and directly used
as bioherbicides or used as lead structures for the development of new
products by chemical modifications. Nonetheless, a common problem
with bioassay-guided isolation of bioactive compounds is that the ac-
tivity of a mixture cannot always be explained in terms of the activity of
one or more of the components, since there may be additive or sy-
nergistic effects [190].

Most allelopathins are totally or partially water-soluble, which
makes them easier to apply without the need of additional surfactants
[191]. Moreover, their chemical structures are more environment-
friendly than synthetic ones, since their half-life is shorter. Never-
theless, this eco-friendly property may shorten the period of activity.
Regarding this, the chemical industry has developed several synthetic
modifications to obtain analogous active ingredients with higher sta-
bility, such as mesotrione [192] and sarmentine [193].

In summary, allelochemicals are very attractive as new classes of

herbicides due to various advantages. Besides the benefits of using
natural compounds in crop protection, they would also represent a
possibility to cope with herbicide resistance evolution in weeds, since
the probability of resistance appearance is lower as multiple targets are
affected [194,195]. Nonetheless, this multi-site action in plants makes
the bioherbicide effects non-specific, non-selective, highly dose-de-
pendent and, in some cases, phytotoxic. Consequently, the use of an
allelopathin as a potential bioherbicide is possible, but rather restricted
to a particular crop with a defined weed composition [196]. This in-
trinsic non-selectivity and short half-life lead to erratic performance in
field conditions, largely explaining why there is no bioherbicide under
extensive adoption yet [197].

5.2.2. Innovative mechanical weed control
In farms where HR weed density has increased beyond a certain

point and available control strategies have been proved ineffective,
mechanical weed control remains the only means to restore pro-
ductivity. Current research is directed to the development of machine
vision technologies for weed control practices that allow the operation
and control of mechanical devices with neither human intervention nor
coverage destruction. For instance, a weed-detecting robotic model for
sugarcane fields has been recently developed [198]. This robotic pro-
totype faithfully identifies the sugarcane crop among nine different
weed species. However, the mechanical weed control system consisting

Table 2
Pros and cons of strategies and technologies for herbicide resistance mitigation.

Strategy / Technology Pros Cons

Crop rotation
Cover crops
Green manures

- Promotion of herbicide diversification (rotation of
herbicide MOAs).

- Reduction of herbicide applications.
- Improvement of biological, chemical and physical soil
properties.

- Low environmental impact.

- More labor-intensive than monoculture systems.
- Lower economic returns in the short term than monoculture systems.
- Termination trouble for cover crops.

Herbicide rotation and
mixtures

- Delay in the evolution of new HR weeds (better for
mixture of MOAs than for sequential use of MOAs).

- Mixture of MOAs allows the use of lower doses,
meaning lower cost.

- Mixture of herbicides requires the consideration of eventual antagonistic events.
- Herbicide sub-doses may induce the evolution of NTSR mechanisms.

Tillage system - Control of vegetative propagules.
- Restoration of balance in soil seedbanks by alternated
use of tillage practices in a no-tillage system.

- - Loss of the no-tillage system benefits (less soil erosion, conservation of soil
structure and moisture, minimum fuel and labor costs, etc.).

Crop competition - Optimization of natural resources utilization.
- Reduction of herbicide applications.
- Low environmental impact.

- Little development of competitive cultivars for some crops.

Genetically engineered HR
crops

- Fast and easy adoption.
- Diversification in herbicide use (by the stacking of
different HR genes in a crop).

- Herbicide-dependence.
- Acceleration in the selection of weeds with multiple resistance.

Bioherbicides - High structural diversity and novel MOAs.
- Less surfactant usage because of high water solubility.
- Low environmental impact.

- Low specificity and low selectivity.
- Highly dose-dependence.
- Possible phytotoxic effects.
- Short half-life.

Innovative mechanical weed
control

- Rapid effect.
- Reduction of the weed seedbank.

- Expensive equipment.
- Difficulty in the adaptation to control different weed species.

Precision and smart
agriculture

- Minimum herbicide dose usage.
- High precision of herbicide spraying with highly
sensitive sensors and high quality image software.

- Nanoscale formulation can improve the effectiveness
of allelopathins.

- High development costs.
- Low economic feasibility.
- Low autonomy of drones for high extension fields.

RNAi
Gene drive

- Prevention of the spread of HR weeds by restoring
herbicide susceptibility.

- Possibility of re-starting a weed management program
using all the available tools.

- Not easily applicable to weeds with polygenic NTSR mechanisms.
- High development costs.
- RNAi can only be used during fallow or prior to crop emergence, in combination
with the herbicide.

- RNAi molecule is highly unstable and susceptible to degradation. Formulation has
to guarantee its stability.

- Gene drive requires up to 20 generations to totally restore herbicide susceptibility
in the population, and its success is highly dependent on the cooperation among
neighbor fields.

- Gene drive is not easily applicable for all weed species. Outcrossing and diploid
species are most suitable.

- Pollen delivery issues associated to gene drive technology.
- Little development of the ethical and legal framework for gene drive usage
regulation.
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of a rotavator blade and a robotic arm that uproots or removes weeds
has not been completely built yet. Many other technologies for physical
weed control (e.g. hot water, soil steaming, flaming, electrocution) are
being developed and tested upon different conditions. For a detailed
description of the state-of-the-art of each one, we recommend Korres
et al.’s recently published work [199].

At present, there is a new tool that allows weed seed control. This is
the integrated Harrington Seed Destructor (iHSD)®, which intercepts
and destroys weed seeds during harvest [200] and, thus, it reduces the
weed seedbank for the next season. The iHSD was found to destroy 99%
of Palmer amaranth seeds in soybean fields [201]. Up to now, this novel
weed control practice has not been extensively adopted yet, probably
because of the need that exists to adapt this technology to different
weed species. However, it is likely that iHSD will be soon adopted in
fields with high densities of Palmer amaranth to reduce the contribu-
tion of this dominant species to the soil seedbank.

5.2.3. Precision and smart agriculture
Precision and smart agriculture can improve management efficiency

of agricultural inputs and reduce the environmental impact of crop
production systems by using site-specific information [202]. Nowadays,
different image processing techniques can be used for real-time weed
identification [203]. Real-time localized spraying includes sensor-based
plant identification and instant herbicide application over the target
weed. This may minimize the total quantity of herbicide applied and
consequently reduce the HR weed evolution rate. In the near future,
robotic and drone technologies could improve on-time field scouting by
using electronic hardware, software and sensors that may allow to
distinguish among crops and weeds. In this sense, Utstumo et al. [204]
have recently presented a robot equipped with a GPS and a drop-on-
demand system that identifies weeds in a field row and sprays ex-
tremely low doses (micrograms) of herbicide over them. Nevertheless,
these tools are limited for current agricultural production because there
are still many challenges in weed control in large fields [151], parti-
cularly because of low drone autonomy.

Agro-nanotechnology may also contribute to weed management. If
herbicide release is controlled by nanoencapsulation of the active in-
gredient, then repeated in-field applications of herbicides will be
minimized, and the adverse effects on plants and the environment
might be reduced as well [205,206]. Recently, Zhao et al. [207] high-
lighted the importance of nanoscale eco-friendly formulation of pesti-
cides, like allelopathins, which may meet the requirements of bio-
compatibility and bioavailability, allowing the insertion of different
strategies into IWMP and contributing to developing and implementing
green nanotechnology [208]. However, more research and further de-
velopment are needed before these tools can be commercialized.

5.2.4. RNAi and gene drive technologies: restoring the herbicide
susceptibility

In the ‘omic and bioinformatic’ era, the use of new technologies for
weed management is promising. It has been suggested that RNA in-
terference (RNAi) technology (branded BioDirect™ by Monsanto) could
help to control HR weeds by restoring their herbicide susceptibility just
before herbicide application [209].In the best known example of this, a
mixture of glyphosate and double-stranded RNA coded to bind the
EPSPS gene is sprayed over weeds during fallow, triggering efficient
local and systemic silencing of the HR gene and allowing the glyphosate
to kill the plants. This technique also involves the spraying of a silicone
surfactant on the plant’s surface that lets the RNA molecules slip
through the stomata (Patent WO 2011112570 A1).

Recently, Dalakouras et al. [210] have stated that the induction of
silencing in plants by high-pressure spraying of in vitro-synthesized
small RNAs is faster and more effective when targeting the apical
meristem than spraying mature leaves. The stability of dsRNA in the
agronomic formulation is a point of major concern because the mole-
cule must join the RISC complex (RNA-induced silencing complex) in

the plant and induce the silencing machinery. Furthermore, this ap-
proach is not suitable for polygenic NTSR, and it is still in the early
stages of development.

Another promising tool is gene drive technology, which could be
used to restore herbicide susceptibility in HR weeds. The gene drive
process can be conducted by the introduction of a cassette containing
the coding sequences for the Cas9 endonuclease and a single-guide RNA
(sgRNA) into a specific target gene of an organism [211]. Next, the
cassette is automatically copied into the sister allele of the homologous
chromosome. The employment of this technique could have many ap-
plications since it could figure the genome edition of entire populations.

If the pollen of a plant that carries the cassette of interest (with a
herbicide-sensitive gene and Cas9 gene) fertilizes the egg cell of a HR
weed individual, the target gene of the haploid egg cell will be quickly
converted into its modified version (Fig. 3A). As the enzyme is guided
to cut the wild-type homologous chromosome at the target site, and the
cell repairs the cut via homologous recombination using the drive gene
chromosome as a template, the endonuclease drive genes are pre-
ferentially inherited. If the endonuclease does not cut, or the cut is
repaired via non-homologous end-joining repair, the drive is not
copied. Although these alternative mechanisms generally occur in low
frequency and are not an impediment to the dissemination of the gene
within the population, their incidence may vary among species and
even among tissues [211].

Thus, the introduction of a Cas9/sgRNA construct into a HR weed
could replace the resistant allele by its susceptible version. Rapid spread
of this gene, due to the super-Mendelian inheritance driven by this
technology, could greatly suppress proliferation and further dis-
semination of the HR weed biotypes (Fig. 3B) [211,212]. Gene drive
has already been tested in yeast, mosquito and Drosophila systems, and
it was found that the frequency of the modified gene increases with
successive generations [213–215]. Some modeling studies estimated
that it would take up to 20 generations for the edited gene to be fixed in
a plant population [216]. Thus, this technology would be harshly lim-
ited in selfing and in perennial weed species and unachievable in those
with vegetative reproduction.

Despite some technical and many ethical limitations, it is important
to define on which weed species gene drive technology would be more
feasible. According to Neve [217], the most suitable target species
would be Amaranthus palmeri, Amaranthus tuberculatus, Alopecurus my-
suroides and Lolium rigidum, all outcrossing, diploid species with a very
high resistance risk.

Paradoxically, a resistance to the gene drive has been reported, and
is a main issue of this new technology [218]. This resistance can be
generated by two mechanisms: natural genetic variations present in the
target recognition sequence within the population, or errors –inser-
tions/deletions– introduced by the system when repairing the cut,
which makes the sequence no longer recognizable. Thus, some re-
searchers suggested that this technology could result in the develop-
ment of genetically isolated populations that may avoid the inheritance
of the modified code [219]. Moreover, it is still unpredictable how gene
drive would behave in wild populations, mainly because it could spread
indefinitely and eventually disturb the agroecosystems. In this way,
scientists are testing new approaches called ‘daisy drive’ and ‘split-
drive’ in their ability to affect only local environments, controlling the
number of generations during which the system is active by placing the
edited gene under the control of a second gene with Mendelian in-
heritance [220,221].

Although current research is focusing on the possibility of simulta-
neously editing multiple target sequences to slow the evolution of HR
weeds [222], most scientists emphasize the need to plan and think
carefully about potential risks before gene drive technology is released
to the wild environment.

Furthermore, neighbor effects can influence the success of almost all
weed management strategies [223]. These effects particularly condition
gene drive´s effectiveness, since the careful coordination between
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neighboring fields is essential to guarantee that herbicide susceptibility
is accurately restored. In this context, the role of the government,
companies and scientists is central to achieve coordinated decisions.

Table 2 summarizes the positive and negative points discussed for
each strategy.

6. Concluding remarks

In this review article, we discussed the current global status of HR
weeds. We indicated global climate change as an unnoticed factor that
may be acting on their selection, especially those evolving into NTSR
mechanisms. We also discussed the pros and cons of a number of tools
that could be adopted to cope with herbicide resistance evolution in
weeds. Although some of them (e.g., gene drive and RNAi technologies)
exhibit a strong potential to mitigate this undesirable selection, con-
cerns about possible ecological disturbances still prevent their appli-
cation at the field level. Therefore, we highlighted the importance to
incorporate several underexploited conventional strategies into IWMP.
The rational use of herbicide mixtures, crop rotations, cover crops,
crops with higher competitiveness against weeds and the use of preci-
sion agriculture tools (including eco-nanotechnology) are highly re-
commended and applicable agronomic practices. Moreover, the iden-
tification of which mechanism (TSR and/or NTSR) is present in a
certain weed population is very useful for weed management decisions.
Nevertheless, a question remains: how extensive or rapid will the
adoption of these integrative strategies by farmers around the world be?
Finding the answer to this question will be one of the most important
challenges in agriculture for the coming years.
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